Sign testing in GAMS
Wietse Dol, November 2010.

Introduction

Working with data and making selections and aggregations in GAMS is easy. Especially when using calculations with conditionals, GAMS shows that:
· you can do difficult tasks;
· that the created code is small;
· it looks like mathematics and hence is readable even for non-GAMS programmers;
· and that it is fast.
The clever use of sets and subsets makes selections and calculations easy. Good use of multidimensional sets makes it possible to create generic code that can be re-used (we call these sets: tuples, see also the McCarl user guide). In this paper we show examples of generic code to test if (parts of) data fulfills certain sign conditions, i.e. if the data is
· strictly positive (x>0),
· positive (x>=0),
· zero (x=0),
· negative (x<=0),
· or strictly negative (x<0).
The idea is that we know (e.g. from economic theory) that certain data should have a certain sign and that we can test if the data we use fulfills these conditions. What we would like is getting information back which data is correct, but more importantly which data doesn’t fulfill the sign test. This is a first and essential step in data checking.
The GAMS SignTest function (examples in SignDemo.gms)
The code is stored in the file SignTest.gms and you can call it with a $batinclude. As always in our code we prefer to create a global and call the code using the global, e.g.
[image: image1.png]$setGlobal Signlest $batinclude "SignTest.gms™
%SionTest% I0(TreeElements,Years) TestConditions(TreeElements,Years) StrictlyNegative

We will see that the function has 3, 4 or 6 arguments, i.e. for more details see below. Don’t worry too much, the file SignDemo.gms contains a lot of examples that makes it easier to understand the code and create your own tests.

Function SignTest

Arguments
Data Tuple Condition Outputname Correct Wrong

Output

set OutputnameCorrect_Data
set OutputnameWrong_Data

Here Condition is one of the following codes:
· StrictlyPositive

· Positive

· Zero

· Negative

· StrictlyNegative

When you do not specify the Outputname the Condition is taken as the default. Also we have _Correct as the default for Correct and _Wrong as default for Wrong. So the example
%SignTest% IO(TreeElements,Years) TestConditions(TreeElements,Years) StrictlyNegative
creates the output:
Set StrictlyNegative_Correct_IO(TreeElements,Years)
Set StrictlyNegative_Wrong_IO(TreeElements,Years)
The first set contains all the combinations specified in the TestConditions tuple that satisfies the testing condition (StrictlyNegative = Data <0). The second set tells you which elements defined in the TestConditions tuple do not satisfy the condition (and hence Data >=0). When you have called the %SignTest% function you can use the created sets for reporting data problems, or for calling data correction routines.
Note that the Data as well as the Tuple are given with the used sets and hence you should supply these arguments without any spaces within the argument. The Data argument tells you which data you want to check. This need not be the full dataset you have (with the original sets used in the declaration of the parameter), but can be any subset of these sets. The most important argument in the SignTest function is the Tuple. The tuple specifies which data you want to check. GAMS has very flexible ways of defining a tuple (see Example 3 in the SignDemo.gms file), i.e. you do not need to type all possible combinations, but can use the advanced element declarations/constructions of GAMS. Also realize that the Tuple can contain less sets than the Data: i.e. this means that for all elements of the sets that are in Data but not in Tuple the Condition is checked.
It is true that you could do your data checking without the SignTest function, i.e. most checking can be done by one line of code. The reasons to define the SignTest function is

· Also non GAMS programmers can perform data checks or extend existing ones

· You create readable and reusable GAMS code.

· You can use the created sets for further data analysis (e.g. GAMS routines to correct data or calling the statistical program R).
Have a good look at the file SignDemo.gms and look at the GAMS list file. It gives you a good idea what is possible, i.e. just by defining a correct tuple you can perform detailed sign testing of your data.

[image: image2.png]28 [set TreeElements

29 |/

30 |"Chapter1”

31| “Sectionl"

32 “"SubSectionl1.1"

33 "SubSubSectionl.1.1"

34 "SubSubSectionl.1.2"

35 “"SubSectionl.2"

36| “Section2"

37 “"SubSection2.1"

38 |"Chapter2”

39| “"Section3"

40 |"Chapter3”

a1 |/;

42

43 set Years/2000%2010/;

44

45 [table IO(TreeElements,Years)

46 2000 2005 2010
47 | "Chapterl" le0 110 120
48 “Sectionl” -10 o 100
49 “"SubSectionl1.1" 30 40 60
50 "SubSubSectionl.1.1" 10 20 30
51 "SubSubSectionl.1. 20 25 30
52 “"SubSectionl.2" 40 50 40
53 “Section2" 30 20 40
54 "SubSection2.1" 30 20 35
55| “Chapter2" 200 110 120
56 "Section3" le0 110 120
57 | “Chapter3" -300 -200 210
61 [*IExample 1: Normal Sign tests on the data

62 |set TestConditions(TreeElements,Years)

63 |/

64 |(Chapter1,Sectionl,Chapter2,Chapter3) . (2000,2005,2010)
65 /5

66

67 fSignTest% I0(TreeElements,Years) TestConditions(TreeElements,Years) StrictlyNegative
68 |display StrictlyNegative Correct I0, StrictlyNegative Wrong I0;

Documentation and software

LEI GAMS tools: http://www3.lei.wur.nl/gamstools

Tree demos:
http://www3.lei.wur.nl/gamstools/gamstrees.zip
Sign testing:
http://www3.lei.wur.nl/gamstools/signtest.zip
R and GAMS:
http://www3.lei.wur.nl/gamstools/GAMSandR.zip

Wietse Dol

e-mail: Wietse.Dol@WUR.nl

